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Although the form and dimensions of steep vortex ripples are well studied in relation 
to the oscillating flow which generates them, nevertheless the accompanying fluid 
motion is not yet understood quantitatively. In  this paper we present a method of 
calculation based on the assumption that the sand-water interface is fixed and that 
the effect of sand in suspension is, to a first approximation, negligible. 

The method employs a simple conformal transformation of the fluid flow onto the 
exterior of a polygon, and thence onto the interior of a unit circle. The initial, irrota- 
tional flow is represented by a logarithmic vortex at the centre of the circle. Other 
vortices within the fluid are each represented by a symmetric system of P vortices and 
their images in the unit circle, P being the number of sides of the original polygon. 
Typically P is equal to 5. However, P is not limited to integer values but may be any 
rational number greater than 2 (see 5 15). 

To proceed with the calculation it is assumed that separation of the boundary layer 
takes place at the sharp crests of the ripples, and that the shed vorticity can be 
represented by discrete vortices, with strengths given by Prandtl’s rule. (For a typical 
time sequence see figures 7 and 8.)  After a complete cycle, a vortex pair is formed, 
which can escape upwards from the neighbourhood of the boundary. 

The total momentum per ripple wavelength and the horizontal force on the bottom 
are expressible very simply in terms of the shed vortices a t  any instant. The force 
consists of two parts: an added-mass term which dissipates no energy, and a ‘vortex 
drag ’, which extracts energy from the oscillating flow. 

The calculation is at first carried out with point vortices, in a virtually inviscid 
theory. However, it is found appropriate to assume that each vortex has a solid core 
whose radius mpande with time like [s ( t  - t,)]t, where t, denotes the time of birth, and 
6 is a small parameter analogous to a viscosity. The expansion of the vortex tends to 
reduce the total energy (which otherwise would increase without limit) at a rate 
independent of s. If the cores of two neighbouring vortices overlap they are assumed 
to merge, by certain simple rules. 

Calculation of the effective vortex drag in an oscillating flow yields drag coefficients 
C D  of the order of low1, in good agreement with the measurements of Bagnold (1946) 
and of Carstens, Nielson & Altinbilek (1969). The tendency for the highest drag 
coefficients to occur when the ratio 2alL of the total horizontal excursion of the 
particles to the ripple length is about 1.5 is confirmed. When 2alL = 4, the drag falls 
to about half its value at ‘resonance’. 
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1. Introduction 
Regularly spaced ripples are a common feature of sandy sea beds along many 

coasts. Usually they are found just seawards of the swash zone, and their intimate 
connexion with wave action and with the mechanisms of sediment suspension and 
transport by waves and nearshore currents has long been suspected. 

The spacing and the form of sand ripples in relation to wave action have been the 
subject of many thorough investigations, for example by Bagnold (1946), Inman 
(1957), Carstens et al. (1969), Mogridge & Kamphuis (1972) and Lofquist (1978). A 
recent summary and discussion of the literature has been given by Nielson (1979). 
Some striking relationships appear. For example 

(1) the ripple length (the spacing between adjacent crests) is generally about 
two-thirds of the horizontal excursion of the water particles, independently of the 
frequency of oscillation and hence of the Reynolds number ; 

(2) the ripple length is almost independent of the sand-grain density; 
(3) the mean drag coefficients are remarkably high, being of order lO-l, nearly two 

orders of magnitude greater than for steady flows over a rough bottom. 
On the other hand, it seems that a quantitative understanding of the conditions 

under which steep ripples are formed and maintained by oscillatory waves is still 
lacking, due chiefly to difficulties in calculating the time-dependent motion of the 
fluid. 

In  a general way, it was recognized as early as Ayrton (1910) that the formation of 
steep sand ripples is connected with the existence of a system of vortices thrown off 
at the crests of the ripples, in alternate directions. During the forward ‘stroke’ of the 
fluid motion, a vortex is formed in the lee of each ripple crest, which picks up sand 
from the trough and from the lee slope of the ripples, subsequently depositing it on the 
ripple crests. Thus the ripples and vortices cooperate; at each stroke the vortices act 
to repair the previous erosion of the ripple crests, and a remarkably stable situation 
persists. The process has been well described by Bagnold (1946, $4). 

In the course of this phenomenon, a considerable amount of the sediment may be 
taken into suspension (particularly with small grain-sizes). This material can then be 
transported in either direction according to the charaoteristics of the waves or mean 
current that is present (see Bijker, van Hijum & Vellinga 1976). 

Attempts to calculate the fluid flow were made by Kalkanis (1964) and by Kajiura 
(1968), but these authors assumed an essentially flat solid boundary between sand and 
water. More recently Sleath (1975) has carried out numerical calculations of the flow 
over an undulating bed, assuming laminar flow conditions, appropriate. to low 
Reynolds numbers. While achieving some successes, this method is clearly not 
applicable to conditions at high Reynolds numbers where the boundary layers are not 
well resolved by the numerical technique. In  Sleath (1975) the crests of the ripples are 
assumed to be more rounded than the troughs. Though it is possible to reverse this 
assumption, and make the model crests sharper, nevertheless they still cannot be 
made as sharp as those of ripples under formative wave action. In  such circumstances 
we expect separation of the boundary layer at a well-defined point, namely the sharp 
crest itself. 

The present paper attacks the problem of the flow over ripples by a different method. 
There are two new aspects to our technique. First, we make a simple transformation of 
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a typical sequence of a ripple-forms into the sides of a regular polygon, as described 
in $2 below. From there it is comparatively simple to map the domain of the flow 
(which corresponds to the exterior of the polygon) onto the interior of the unit circle 
(see $ 3). The transformation is altogether similar to that used by the present author 
(1973) to approximate the flow beneath a progressive gravity wave in deep water, 
except that here it is not the interior of the polygon but the exterior which is mapped 
onto the unit circle. 

If the flow were irrotational, this mapping would immediately give the velocity 
field over the ripple (see $ 4). The second main feature of our method is that we assume 
the actual flow field, in which the boundary layer separates at the ripple orests, to be 
represented by a distribution of point vortices, with circulation given by Prandtl's 
rule, as in $6.  Each vortex is then represented in the transformed plane by a simple 
circular vortex together with its image in the unit circle (see figure 5). The motion of 
the vortices and of the corresponding velocity field may then be calculated by straight- 
forward time-stepping. 

Such a method of computation by 'surface vorticity' has been used recently by 
Clements (1973), Stansby (1977), Graham (1980) and others, to calculate the shedding 
of vortices from circular or sharp-edged cylinders in steady and oscillating flow. A 
historical review is given by Clements & Maul1 (1975) ; see also Saffman & Baker (1979). 
The method is practical so long as the requisite number of vortex elements is not too 
great. In the present application the number of vortices is brought within practical 
bounds by some amalgamation into single vortices or, more interestingly, into vortex 
pairs which can escape from the neighbourhood of the boundary. 

One advantage of the present method is the very simple expression for the total 
horizontal momentum, derived in $ 7 below, and for the resulting stress on the ripple 
surface, derived in $8. These enable our computations to be readily compared with 
laboratory observations by Bagnold (1946), Carstens et al. (1969) and Lofquist (1980), 
with excellent agreement. 

2. The polygon transformation 
Consider a sequence of ripples, each of length L, as in figure 1 (a) ,  and let 

z = x+iy, (2.1) 

where x and y are rectangular co-ordinates, the origin is at a crest A, the x axis is 
horizontal and the y axis vertically upwards. 

Suppose first that the interior angle at the crest of each ripple is (n - 2n/P), where P 
is an integer. To fix the ideas we may take P = 5, so that the crest angle is 108". Then 
by the simple transformation 

c = eAkz, kPL = 2n, (2.2) 

any P consecutive vertices of the ripple are transformed into the vertices of a regular 
P-gon (polygon with P sides) as shown in figure 1 (b). The vertex z = 0 goes to the 
point 6 = 1, and points at infinite depth (y = - 00) go to the origin [ = 0 in figure 1 (b). 

The transformation (2.2) being conformal, angles are preserved locally, so that the 
transformed boundary in figure 1 (b) also has an interior angle (n- 2n/P) at each 
corner. This being the interior angle of a regular P-gon it follows that the trans- 
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FIGURE 1. A sequence of ripple profileB (a) in the z plane and (b)  transformed 
into a polygon in the 5 plane. 

formed boundary touches the sides of the P-gon at each vertex. Accordingly we ap- 
proximate the transformed boundary by the sides of the P-gon itself. The sand and the 
water are then represented by the interior and the exterior of the P-gon respectively. 

The equation of the boundary, in the [ plane, is given by 

r GO8 (8 - 8,) -- cos (n/P), (2-3) 
where T and 8 are polar co-ordinates (see figure 2) and 6, is one of the P angles 

2n(j-4)/P, j = 1,2, ... P. 
On transforming back into the physical plane by 

we find for the equation of the ripplemwface in the z plane 
kz=i ln[=i lnr-B,  

k(y -yo) = In sec k(x - xo), (2.5) 
where xo and yo are constants, and I k(x - 5) I Q KIP.  The ripple steepness, that is the 
ratio of its crest-to-trough height h to the ripple length L, is given by 

-- h lnsec(n/P) 

Values of this expression for some low values of P are shown in table 1. For typical 
profiles see figure 2. 

(2.6) L- 2n/P * 
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FIGURE 2. Typical sequences of profiles given by equation (2.5). 

P n/P h/L 

2 9oo m 
72O -467 3 
60" *3310 3 
6 1$" -263 2 
46' *220 6 4 

6 36O el687 
6 30' -1374 

612 

7/2 

7 2 g o  -1162 
8 224O -1008 

10 18' -079 9 
12 16O -066 2 

K 

~6OOOOO 
4 3 9  696 
~730499 
-791 737 
-834627 
*888 856 
-920 37 1 
-940223 
~ 9 6 3  506 
469 597 
-978691 

rn 

a0 

448  757 

-326257 
-236 647 
~ 1 4 3  323 
-096 826 
.070010 
-063 063 
*033 567 
so23 166 

-484 595 

P 
00 

*727 596 
-379 120 
-238 897 
-1 66 803 
-094115 
-060 863 
-042 646 
e031664 
-019307 
-013026 

TABLE 1. Parameters of the polygon transformation. 
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Actual ripple steepnesses usually lie between about 0.09 and 0.21 (see NieIsen 1979), 
the most common values being 0.18 rt 0.02. This suggests that a value P = 5 is not 
unrealistic. In  fact the profile (2.5) is then extremely close to the ‘normal’ form? of 
the ripple as indicated by Lofquist (1978, figure 26). We shall therefore adopt this 
value of P for most,of the subsequent numerical work. However, we emphasize that 
the analysis is by no means confined to this value of P ,  or even to P integral (see 
011). 

The ‘normal’ shape of ripple is related to the ‘angle of repose’ of the sand grains. 
This commonly is close to the maximum surface slope of the ripple. The angle of 
repose is in turn related to the shape of the sand grains, which again is correlated with 
their mean size (the smaller grains being on the whole more rounded). This has led 
Nielsen (1979) to suggest a correlation between ripple steepness and grain size. 

Nielsen (1979) also suggested approximating the profile of each ripple by a para- 
bola. The corresponding velocity field would be quite difficult to analyse. However, 
by using the alternative form (2.6) we shall obtain a comparatively simple expression 
for the flow over the ripple. 

3. Mapping onto a circle 

interior of the unit circle in figure 3 by writing 
It is straightforward to map the exterior of the polygon in figure l ( b )  onto the 

where go, W, and K are constants, to be determined. Equation (3.1) is the form to 
which the Schwartz-Christoffel transformation (Nehari 1952) reduces when the 
vertices of the original P-gon are transformed into the points 

on the unit circle. The lower limit of integration W, in (3.1) may be chosen arbitrarily 
in or on the unit circle (excepting a t  the origin). The constant K defines the scale of 
the transformation. 

To determine K ,  we may take W, = 1 and W = e2inlP in figure 3. The corresponding 
points A ,  B in figure l b  are = 1 and 5 = e-zinlp. So from (3.1) we have 

Evaluation of the definite integral in (3.3) yields 

Some values of K are given in the fourth column of table 1. 

t ‘Normal’ in the sense of not ‘compressed’ or ‘extended’. 
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FIUURE 3. Transformation of the domain of flow in figure 1 onto the interior 
of the unit circle in the W plane. 

p = 0.5 
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1 .o 
FIGURE 4. Streamlines in the z plane corresponding to the initial irrotational flow. 

To clarify the transformation further, we set 

W = p d a ,  (3.5) 

so that p = 1 corresponds to the unit circle. As a point in the z plane follows the profile 
of a ripple from A to B in the positive sense (x increasing) the corresponding point 6 
in figure l ( b )  traverses one side A B  of the polygon in the clockwise (i.e. negative) 
sense, and the corresponding point Win figure 3 describes an arc AB of the unit circle 
in the anticlockwise (i.e. positive) sense. In  each case the sand is on the right and the 
fluid on the left. 

For numerical computation it is convenient to take W, = e-in/P to avoid the 
singularity a t  W = 1. Figure 4 shows some curves p = constant calculated in this way. 
These correspond to concentric circles in the W plane. 
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4. The initial flow 
Suppose the fluid above the ripple is started from rest impulsively, in such a way 

that far above the surface the flow is a uniform horizontal stream of strength U .  
Initially the flow will be irrotational and so is described by a velocity potential 
x=#+iy?suchtha t  asy- tooso 

Thenfrom(4.1)and(2.2) 

But from (3.1) we have when W is small 

x ff uz. (4.1) 

(4.2) x N (i U / k )  In y. 

f;- K/W. 

x - (U/ik)ln W. 

x = ( U / i k )  In W, 

Hence (4.2) becomes, as W ic 0, 

Now the potential 

represents a circular vortex in the W plane having zero flow across the boundary 
p = 1. It is regular everywhere except at W = 0, where it has the required asymptotic 
behaviour, by (4.4). Therefore (4.5) represents the required initial flow. 

The streamlines correspondong to (4.5) are given by 

y? = - ( U p )  lnp, 

and so are represented by the curves p = constant in figure 4. 

5. The flow due to a vortex 
Consider next the flow due to a vortex of strength I? imbedded in the fluid at the 

point z = z,, say. Because of periodicity in the x direction, we assume there are 
similar vortices a t  the points z = z, & jL ,  j = 1,2, . . .. 

The situation in the W plane is shown in figure 5.  If W, is the point corresponding 
to z,, there will be a vortex of strength I? a t  each of the points 

W = Wne2niialP, j = 1, ..., P. (5.1) 

Now the velocity potential associated with a single vortex at  W, is 
n 
1 - ln(W-W,). 

2ni 

The potential associated with all P vortices in the interior is accordingly 

In order to satisfy the condition of zero flow across the unit circle we simply add P 
vortices of equal but opposite strength - I? at the image points 

w, = 1/w: (5.4) 

etc. where a star denotes the complex conjugate. Thus altogether we have 

r wp-w: 
2ni wp-w;. ~ = - l n  
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I 

FIGURE 6. A system of vortices and their images in the unit circle I WI = 1. 

Consider now the motion of each vortex. For a free vortex we have, in the z plane, 

For the corresponding motion in the W plane we have 

where W' denotes d W/dz. From (5.6) and (5.7) we have 

It is convenient to introduce the modified potential 

y,)=x--ln(W-W,). 1 

2ni 

Near z = z,, an expansion in Taylor series gives 

and so 

(W-K) = W ( z - 2 , )  l+--(z-z,)] 1 W" [ 2 w  

1 W" =-+- 1 
W'(2-2,) w-w, 2 W 2 '  

From (5.8) and (5.9) we have therefore 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
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In  (5.12) the last term depends essentially on the curvature of the mapping function 
W ( 4 .  . .  

In  (5.12) it is easy now to calculate the value of dyn) /dW at W = W,. If x is given 
by (5.5)wefind 

where pn = IW,l. From (2.2) and (3 .1)  we have also 

d c d  W ik[W2 W' = -- = 
dz d{ K(1-  WP)z'P' 

1 dW' k 1 
and hence 

---=- W" 
2W'Z 2W' dW 2iW" W ( 1 -  Wp)'  
-- 

(5.14) 

(5.15) 

6. Vortex shedding 
After the initial motion, boundary layers will form at the surface of the ripple. If q 

denotes the tangential velocity within the boundary layer, and 7 is a co-ordinate 
normal to the boundary, the flux of vorticity within the layer is qaqlaq. Assuming q 
to vanish on the boundary itself, the total vorticity flux across the layer is then 

Jg (a&) = 4Q2, (6.1) 

where Q is the velocity just outside the boundary layer (see Prandtl & Tietjens 1934). 
Thus a t  the point of separation, vorticity will be shed from the boundary layer at a 
rate &Q2. 

Following Clements (1973) and others, we shall agree to represent the resulting 
motion by a succession of vortices imbedded in the irrotational flow, each vortex 
being of strength 

r, = J4Q2dt, 

where the integral is taken over the time since shedding of the previous vortex. 
The initial position of each vortex is assumed to be given by 

Z ,  = z o + l u d t ,  (6.3) 

where zo is at or near the point of separation and u is the corresponding vector velocity, 
SO Q = 1.1. 

At any given time, therefore, the flow will be represented by a potential of the form 

At points other than the vortices themselves the velocity will be given by 

that is 
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The motion of the vortices themselves is found from 0 5 :  
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7. The total momentum 

turn out to be remarkably simple. 

contour C is given in general (see Ramsey 1942) by 

Expressions for the total momentum and for the net force exerted on the boundary 

The total linear momentum, or impulse I ,  of a body of fluid contained within a 

where $ is the stream function, and we have taken the fluid density to be unity. $ is 
assumed single-valued and non-singular within C. Any singularities at z,, say, must 
be enclosed by contours B, surrounding z, and joined to C, if + is not single-valued. 
In the case of the potential (6 .4)  $is in fact single-valued everywhere but at the points 
z,, and the contributions to I from the small contours surrounding these singularities 
are vanishingly small. 

Consider then the momentum contained in the contour C as defined by figure 6. 
The contour consists of part of the ripple surface C,, two vertical lines C, and C, at 
x = f &L, and a remote horizontal line C, on which y = y, and $ N $,, say. 

Take first the contribution I, from the term in x proportional to U .  For this we 
have 

+ = -(U/k)lnp. (7.2) 

On C, we have p = 1 so $ vanishes. From C, and C, together there is no net contribu- 
tion, by the periodicity of p as a function of x. Therefore altogether 

Now from (2 .2)  and (4 .4)  we have 

and so 
ky, = Re (In 6) = In (K/p,) 

lnp, = !nK-Icy,. 

Therefore altogether we have as the contribution to I from the current at infinity 

I u  = UL(y,-k-llnK). (7 .6 )  

This expression is of course real, the vertical component of the momentum being zero. 
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We note that the total mass M of water contained below the level y = y,,, is given by 

where 
M = L(y-  + k-lm), 

m = A S t L  zd(1nsec kz) 
L x = - f L  

(7.7) 

Values of m are given in table 1. mlk represents the mean thickness of the water 
contained below the level of the ripple crests. 

Consider now the contribution to I from each vortex. From (6.4) 

On C,, $ is constant and equal to 

The contribution to I is therefore 

(7.9) 

(7.10) 

(7.11) 

The contributions from C, and C, cancel by periodicity, while on C,, where W is small, 
we have 

+ = - - I  rn n (WJW,)~ = - - r n Inpip. (7.12) 
2n 2n 

The contribution from C, is thus minus twice the contribution from C,. Noting that 

LP 1 
2n k' 

I, = -k-lC r,lnp,. 

- = -  

we have altogether 

(7.13) 

(7.14) 
n 

For vortices shed by a positive current, the circulation I?, is generally clockwise, or 
negative. Since pn < 1, this means that Iv will be negative in general, i.e. each vortex 
produces a momentum defect proportional to its strength r,. It is useful to consider 
each vortex together with its image; really i t  is the image which induces the negative 
momentum. 
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Altogether, from (7.6) and (7.14) we have 

I = UL(y, - k-1 In K) - k-1 x I?, In pn. 
n 

13 

(7.15) 

8. The force on the boundary 
From the above expressions we can immediately calculate the net force F exerted 

on the ripple surface, either in steady or time-dependent flow. For, suppose the fluid 
is accelerated by a mean horizontal pressure-gradient w = ( i 3 p / t J ~ ) ~ = ~ .  From the 

dU 
dt * 

motion at infinity we have 
w =  - - 

Now, considering the balance of horizontal momentum contained within the contour 
C of figure 6, we note that the convection of momentum across both C, and C, vanishes, 
while the convection across C, just cancels that across C,, by the 2 periodicity. The 
rate of change of the momentum within C is therefore due solely to the pressure 
applied at the boundaries. Now the net force on the water across C, equals - F. A t  z 
on C, the pressure p exceeds the pressure at the corresponding point ( z  - L)  on C, by 
an amount Lm precisely, so the net force across these two boundaries is 

, 

- W h  + %A (8.2) 

where his the height of the ripple. Lastly the contribution from the horizontal contour 
C, vanishes. The momentum balance therefore gives 

orby(8.1) 
dI dU 
dt dt F =  - - + L -  (h + Yw). 

On substituting for I from (7.15) we obtain finally 

kF = LdU (kh+ l n K ) + 2 x r n l n p n .  d 
dt n 

The first term in equation (8.5),  namely 

dU 
kF, = L- dt (kh+ln K )  (8.6) 

can be considered as resulting from an added mass y/k per unit horizontal distance, 
where 

(8.7) 

This quantity is given in table 1. Clearly the force P, is proportional to d U/dt .  In an 
oscillating flow it does, on the whole, no work. 

y = kh+lnK = ln(KsecIr/P). 

The second term in (8.5),  namely 

represents a mean stress - 
P d  

7y = F,/L = T- 
Lndt n I',lnp,, (8.9) 
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due to the generation and propagation of the vortices. In  those time intervals when 
no new vortices are being generated, both the rn and the number of terms under the 
summation remain constant and (8.8) reduces to 

(8.10) 

a formula that can be verified by Blasius' theorem (see appendix A). Generally, 
however, allowance must be made in F ,  for the generation of new vortices at the 
point of separation. 

Consider now the rate of working D by the external pressure gradient, per unit 
horizontal distance. This is 

(8.11) 

where $* denotes the value of $ on the surface of the ripple. The part of 11. involving 
U makes no net contribution, as we have seen. We therefore have left the vortex 
contribution alone. From (8.11), (7.11) and (7.13), 

au prn D = --x-lnpn. 
at 2n 

(8.12) 

In time-periodic motion, the right-hand side of (8.12) may be replaced, on average, by 

a pr, 
a t ,  2n 

D = U-X-lnpn, 

that is to say 
D = U T ~ ,  

(8.13) 

(8.14) 

where T ~ ,  is given by equation (8.9). In  other words, the mean rate of working by the 
external pressure gradient is just that required to overcome the vortex-induced stress 
on the bottom. Thus we have an energy balance, despite the fact that the self-energy 
of the vortices is infinite. 

9. Numerical computations 
The method outlined above is well suited to numerical computation in FORTRAN 

with complex arithmetic. 
As first step, a subroutine was constructed yielding z as a function of W using equa- 

tions (2.4) and (3.1). The values of K in table l, which were first derived from (3.4) 
using tabulated values of the gammafunction (Abramowitz & Stegun 1965) were 
then checked by means of the formula 

in which the lower limit W, is taken as e-inlP, in order to avoid the singularity at W = 1. 
The values of K in table 1 were verified in this way to six significant figures. 

To carry out the method of 5 6 a basic time-step At was chosen, of order 0-05 or less, 
the velocity at infinity being given by 
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In  most computations cr was chosen as unity (the results for inviscid fluid being 
independent of the time scale) and further 

U, = 0 * 7 5 L ~ ,  (9.3) 

k = 1, L = 2n/P (9.4) 

where L is the ripple length. Again, units of length were chosen so that 

and in most of the computations P was taken to equal 6 (see $2). 

W plane was advanced by an amount 
At thejth time-step f it was supposed that the position W, of the nth vortex in the 

} (9.15) 
j= 1, 

j = 2,3,  ..., 
the latter formula being accurate to O(At)3, not (At)2. The values of 73', = dW,,/dt 
were calculated from equation (6.7). 

After every three time-steps a new vortex was generated a t  the point 

W, = W, + 7 WAU~ At, 
3 

where W, is the point (1 - 8) close to the ripple crest W = I ,  and uj denotes the velocity 
at W, (found from equation (6.6)) a t  the three preceding instants tj where j = (3N - 2), 
(3N - l) ,  3N. The strength of the vortex was taken as 

corresponding to equation (6.2). The value of 8 was taken as 0.1. 
When programmed in FORTRAN on the IBM 370-95 at Cambridge University, the 

above computation took about 3min for 250 time-steps (up to N = 83). Thereafter 
each time-step took a time proportional nearly to the square of the number of 
vortices : N2. 

As was found by Clements (1973) and also by Kiya & Arie (1977), the results were 
fairly insensitive to the particular value of 8 (representing boundary-layer thickness) 
and of the time-step At, except that if At were too large some vortices were lost by 
crossing the ripple boundary p = 1. To avoid this it was found necessary to  keep 
At not greater than 0.025. 

10. Initial results 
Figure 7 shows successive stages of the computation for the sinusoidal oscillation 

given by equations (9.2) and (9.3), with 8 = 0.1 and At = 0.025. Each small semi- 
circle represents a vortex, the radius R, being proportional to the square root of the 
corresponding circulation, in fact 

R, = (o.ir,p. (10.1) 

The strength of each vortex is thus proportional to the area of the corresponding small 
circle. Negative and positive vorticity is represented by semicircles 1 and C , having 
gaps on their left and right sides, respectively. 

In figure 7 ( c )  when t = 0.9, the initial shear layer, represented by the 12 discrete 



16 

FIOURE 7. Successive positions of point vortices, in the sinusoidal flow U = 0.75 sin ot 
starting from rest at time t = 0. The case P = 5, w = 1, k = 1, B = 0. 
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FIQ~RE 7 (g-k). For legend me p. 16. 
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5.40 

5.85 

6.30 

FIQURE 7 (Z-o). For legend see p. 16. 
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vortices shed by this time, is beginning to curl over, under the influence of its own 
vorticity. When t = 1.80 the process is further continued, the first 15 point vortices 
becoming concentrated into a rather tight spiral in the lee trough of the wave. 

The greatest excursion of the vortices to the right occurs when t = 2.7. By this time 
the velocity U is slowing down, and the strength of the vortices shed at the crest is 
quite small. At t = 3.15 = n the flow at the crest is already reversed and some vortices 
of the opposite sign are being shed. When t = 3.6 the vortex is being swept back over 
the crest, dragging with it some vorticity of the opposite sign. Between t = 3.15 and 
t = 6.30 the initial vortex is carried back through a distance of 24 ripple lengths 
(though the total stroke 2a is only 1.5L) and comes almost to rest above the crest two 
ripple lengths to the left of its starting-point, having risen to a height of about )L. 

When t = 6.3, the clouds of vorticity above the crests have become detached from 
the fluid below, and it is possible to draw a line a t  about y = 0.25 (the wavelength L 
being 2n/5) separating these clouds from the vorticity remaining near the surface. 
On examining the ‘clouds’ more closely it can be seen that each of them is divided 
roughly into two halves, by an axis at 45’ to the horizontal. Above the axis the vorti- 
city has mainly the same sign as the original vortex, i.e. it is negative. Below the axis 
the vorticity is mainly positive. If now we sum the total positive circulation 2 r, 
within the cloud it is found to be 0-710, compared with the total negative vorticity, 
which is - 0.712. The total circulation in the cloud is therefore almost exactly zero, 
showing that the cloud is, in effect, a vortex pair. It is this property that has enabled 
the cloud to rise to its actual height and escape from the neighbourhood of the 
boundary. 

(It will be recalled that an isolated irrotational vortex has infinite energy, not only 
on account of the motion near its centre, which can easily be replaced by a viscous 
core, but more significantly from the velocity field at infinity, which is proportional to 
Iz - ~ ~ 1 - l .  Thus in an infinite fluid to establish a single vortex would require infinite 
energy. But, in the presence of a plane boundary, an irrotationalvortex, togetherwith 
its image, has only finite energy, the cores being disregarded. A vortex and its image 
can therefore be more easily generated. At the same time such a vortex pair is trapped 
by the boundary; it cannot get away by itself without an infinite supply of energy. 
Suppose, however, that it meets another vortex pair, or system of vortices, such that 
the circulation of the total system on one side of the boundary is zero, then this system, 
or any part of it having zero combined circulation, may indeed escape.) 

n o  

11. Vortex pairing 
To proceed further it seems permissible, at this stage, to simplify the computation 

by replacing the upper clouds of vorticity in figure 7 ( 0 )  by equivalent vortex pairs. 
Thus we wish to define two vortices r+, I?-, say, situated at points W+ and W- in 
the W plane, with at least the following properties: 

and 

(11.1) 

(11.2) 
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FIGURE 8. Positions of point vortices after consolidation of ‘clouds’ in 
figure 6(0) into a vortex pair. 
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I 
0 

F 
0 

-0.' 

FIGURE 9. Comparison of the momentum I and vortex force F (a) without and (b)  with 
consolidation of the vortex pair at time t = 6.30. The case P = 6, w = 1, k = 1, E = 0. 

The first property ensures that the total circulation of the system remains unaltered, 
and the second that the total momentum also is unchanged (see $6), at least moment- 
arily. To these conditions we may add the following: 

and 

(11.3) 

(11.4) 
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FIGURE 9(b ) .  For legend see p. 21. 

which, assuming I'+ and I'- are of opposite sign, serve with the two previous equations 
to define the vortices uniquely. In  fact if the four sums in (1 1.1) to (1 1.4) are denoted 
by S,, S,, S, and S4 respectively, and if r+ > 0, we have 

and 

(11.5) 

(11.6) 

It is understood that the summations Si are taken over the vortices of the cloud only. 
When this is done, figure 7 ( 0 )  is replaced by the corresponding figure 8 (a). On 
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proceeding further (figures 8b-d) it is found that the new vortex pair rises to a height 
y = 0.8L, well above the boundary. At the same time, interestingly, the original 
vortex pairs become separated, probably under the influence of the remaining vorticity 
below (compare Aref 1979) and each vortex forms a new pair with its neighbour on the 
other side. 

Meanwhile each cloud of vorticity situated in the ripple troughs to the left of a crest 
in figure 8(a) moves to the right through a distance of nearly two wavelengths and 
rises to a height of about 0.3 L ,  having picked up some opposite vorticity on the way. 

If the total vorticity in the cloud above y = 0.25 is summed it is again found to be 
roughly in balance with the total negative vorticity in the cloud: + 0.524 as against 
- 0.589. Thus again we may replace the cloud by an equivalent pair of vortices and 
proceed as before. 

To demonstrate the effect of consolidation, we show in figure 9 the horizontal 
momentum I, over one wavelength (as given by equation (7.14)) calculated in the 
two cases when there is no consolidation of the vortices, and when there is consolida- 
tion a t  time t = 6.30, as in figure 8. It can be seen that the difference is quite small. 

Also in figure 9 we show the vortex force F, calculated from equation (8.10). To 
perform the differentiation in equation (8.10) we have used the smoothed derivative 
fTgiven by 

1 6 z  = +fA-i) + 2(fA+2 +fA-2) (fi+3 +fA-3)], (11.7) 
where 

for a functionf, =f(tn). Clearly this simplifies to 

f A = ( fn+l  -f,)lAt (11.8) 

12. Energy, stability and damping 
As the computation proceeds the number of point vortices below a given level, say 

y = 0.25L, is found to increase indefinitely, and the close approach of random pairs 
of vortices occasions some unrealistically high values of rN and dWn/dt. As a result 
the computation tends to become ‘noisy’. To avoid this effect we may exclude the 
neighbourhood of each vortex by a small circle of radius an, say, inside which the 
velocity field is bounded. 

When this is done, the total kinetic energy of the flow becomes finite. In  fact by use 
of the formula 

(12.1) 

for the kinetic energy within a simple closed contour C i t  may be shown that the total 
energy contained in one wavelength L is given by 

2T = U2L(ym - k-lln K) - 2Uk-IX r,1npn 
n 

(12 .2 )  
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To make the model more plausible we assume that the radius of the core increases 
with the time, that is 

8n = [dt-tn)I*, (12.3) 

where E is a constant resembling the kinematic viscosity v and ( t  - t,) is the elapsed 
time since the instant t, when the vortex was generated. Outside the core, the velocity 
is assumed irrotational. Inside, following Tunstall & Inman (1974), we assume a 
solid rotation. Thus in the neighbourhood of W = W, the contribution of the vortex 
at W, to the velocity field is assumed to be multiplied by a factor 

and 
1 when IW-Wnl > a,, (12.4) 

lW-Wn12/8: when IW-W,l < 8,. (12.6) 

The total energy of the flow, which in a completely inviscid model would tend to 
grow indefinitely, is to some extent kept in check by the continual increase in the size 
of the vortex cores. From (12.2) we see that this produces an effective rate of dissipa- 
tion 

a r: D = -X:-ln8,, 
at 12 4n 

which by (12.3) becomes 
V Z  

(12.6) 

(12.7) 

independently of e. 

vortices in each of which 
The last expression may be compared to the loss of energy in a system of isolated 

(12.8) 

where r denotes the radial distance (see Lamb 1932, p. 592). From the general formula 

we obtain 

(12.9) 

(12.10) 

where h = ra/4vt. The integral in (12.10) is found to equal 4 exactly (see appendix B). 
This yields a value for the dissipation near the core which corresponds precisely to 
(12.7). 

The viscous dissipation at the solid boundary I Wl = 1 can be represented to some 
extent by assuming that, when lWnl > 1 - 8,, the vortex is absorbed into its image and 
disappears (cf. Clements 1973). 

13. Coalescence of vortices 
In f 11 it was proposed that a cloud of point vortices sufficiently far from the 

boundary might be combined, at a suitable instant, into a single vortex or a vortex 
pair. When on the other hand each vortex is assumed to have a core of finite size, it 
seems natural to allow any two vortices to merge when their cores touch or overlap. 
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Besides providing a smoother process than before, this assumption has the advantage 
of keeping the total number of vortices low enough for extended computation. 

Accordingly we shall assume that when two vortices at W = W, and W,, say, (or, 
rather, two 2P-fold systems of vortices) are such that 

IWn- Wml < ( & n + U ,  (13.1) 

then they are replaced by a single vortex (or vortex system) of strength r,, at the 
point W = W,, where 

r,, = r,+r, (13.2) 
and 

I',,ln WFm = r,ln Wf + r,ln Wg. (13.3) 

Moreover we assume that the area of the new core is the sum of the arem of the two 
original cores. This implies an 'age' for the equivalent core equal to (t -t,,), where 

s(t - t,,) = s(t - t,) + s(t - t,). (13.4) 

Hence, we define a hypothetical time of generation for the 'equivalent' core given by 

t,, = tm+tn- t ,  (13.5) 

where t denotes the instant of coalescence. 
We note that the rule (13.3) implies conservation of the total momentum. However, 

if r, and I?, are nearly equal but of opposite sign, the position W,, of the combined 
vortex may be quite far from either W, or W,. We therefore restrict the occurrence 
of coalescence to cmes when rlzrm > 0. 

When a vortex merges with its image at the solid boundary there is little momentum 
change, since then In W, is quite small. Moreover, the loss of momentum is easily 
interpreted as a frictional effect (see Clements 1973). 

14. Comparison with observation: the drag coefficient 
It was noticed by Bagnold (1946) and confirmed by Carstens et al. (1969) that the 

fluid drag over rippled beds can greatly exceed the corresponding drag over a flat 
rough bottom, by some two orders of magnitude. It is interesting to compare these 
experimental results with our present calculations. 

We may define a drag coefficient C, by 

7 = C D U l u l  (14.1) 

relating the horizontal stress T on the bottom to the instantaneous velocity U outside 
the (inertial) boundary layer. The mean rate of energy dissipation over a cycle will 
then be given by 

b = CDU'luI. (14.2) 

The drag coefficient C, may be a function of the time t ,  but we can define a mean 
drag coefficient 6, by the equation 

(14.3) 
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Run T 
no. ( 8 )  

63 3-57 
64 3.55 
65A 3-54 
66 3.55 
67 3-84 
68 3-57 
69 3-56 
70 3.54 
71 3-63 
72 3-53 
73 3.55 
74 3.56 
75 3.55 
76 3-53 
77 3.54 
78 3.47 
79 3.55 
80A 3.54 

21 3-56 
22 3.55 
23 3-55 
24 3-55 
25 3.55 
26 3-55 
27 3-53 
29B 3.54 
30B 3.52 
31B 3-52 
32B 3-53 
36 3.55 
61 3-69 

106A 3.54 
1 l l A  3.53 
112A 3-53 
114A 3-65 

2a L 
(cm) (cm) 2a/L h/L  OD 

(a) Coarse sand (diameter 0.585 mm) 

20.2 14.6 1.38 -191 
24.0 16.7 1.44 a195 
27.6 18.1 1.52 a186 
32.1 20.4 1.58 *193 
37.1 23.9 1.55 a190 
39-3 25.2 1-58 -206 
44.7 29.0 1.54 .200 
48.4 25.7 1-88 -185 
49.5 26.4 1.88 -185 
53.3 30.0 1.78 a187 
58.2 26.2 2.22 -192 
61.6 30.4 2.03 a197 
66.4 39.1 1-67 el50 
70.4 37.8 1.86 el81 
74.9 35-7 2.09 -173 
78.4 46.3 1.69 *148 
84.7 44.1 1.92 -157 
24.9 17.4 1.43 -180 

el20 
el33 
el64 
-155 
a 1 0 0  
-159 
.142 
~ 1 3 4  
-131 
-122 
el24 
-125 
*118 
-109 
e l 1 0  
,097 
-096 
-252 

(a) Medium sand (diameter 0.297 mm) 
17-8 10.6 1.67 el71 a124 
24.0 12.7 1.89 ,175 -092 
27.3 14.5 1.88 el76 *084 
30.7 14.5 2.12 *179 -086 
41.7 19.4 2-15 a170 *067 
46.8 22.1 2.12 -162 *071 
52.2 24.5 2.13 -132 *072 
64.8 27.0 2.40 -115 .053 
71.2 20.1 3.54 -105 *049 
89-0 19.1 4-66 so26 *035 
78.1 22.0 3.55 -065 a032 
66.2 24.5 2.29 el31 *064 
16.0 10.4 1.54 -183 -187 

( 0 )  Fine sand (diameter 0.190 mm) 

36.3 10.9 3.33 a134 ,053 
47.4 10.6 4.49 -125 -041 
62.7 10.0 6.25 a048 -039 
22.5 10.4 1.58 -199 so92 

&/I@ 

0-20 
0.27 
0.34 
0.44 
0.68 
0.67 
0.88 
0.85 
0.89 
1.09 
1.04 
1.27 
1.74 
1.81 
1.82 
2.47 
2-54 
2.95 

0.13 
0.2 1 
0.27 
0.30 
0.27 
0.70 
0-87 
1.19 
0.97 
1.16 
1.17 
0.94 
1.13 

0.27 
0.34 
0.43 
0.12 

TABLE 2. Mean drag coefficient c~ derived from the data of Carstens et aZ. (1969). 
~~ ~ 

If U issinusoidal, i.e. 

then we have always 

U = U, sin (wt + constant), (14.6) 

(14.6) 

Thus (14.4) becomes 
- 3n - 
C, = - D / U i .  

4 
(14.7) 
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FIGURE 10. Experimental and theoretical values of the drag coefficient GD in oscillating 
flow over sand ripples. Observations using various grain sizes of quartz (Carstens et al. 1969) : 
A, 0.585mm; 0, 0.297mm; 0, 0.19Omm. ., quartz, Lofquist (1980). Present theory: +, 
E = 10-6.6, x ,  e = 10-6.0; +, E = 10-4.5. 

(a) Calculated mean drag coefficients in oscillatory flow, when P = 5, k = 1, a/L = 0.75 

E D  

O < o t < 2 n  n < w t < 3 n  
E A r > 

0 -095 -111 
10-6 .6 -125 el66 
10-6.0 el05 -106 
10-4.6 -103 -114 

(b) Values of the mean drag coefficient c ~ ,  when P = 5,  k = 1 and U, = ao = 1, 
over various ranges of wt 

2a/L e (0,  2n) (2n,4n) (4n,8n) (6n,8n) (8n, lh) (lh, 12n) Mean 
1.0 10-6 -091 .09 1 -098 -109 -084 -123 a099 
1.0 10-4 -093 *095 a117 a135 -137 a084 a110 

1.5 10-6 el01 el07 -122 el55 - - el21 
- a121 1-5 -097 -121 ~169 -096 - 

2.0 10-6 -091 -037 el39 - - - a089 
2.0 10-4 -095 *098 -092 - - 6095 

- - -089 3.0 10-6 -086 *092 
- *098 3.0 10-4 .ow *097 

4.0 -076 - - - - .076 
- -068 4.0 so68 - 

TABLE 3 

2 PLM 107 

- 

- - 
- - - 
- 
- - - 
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Bagnold (1946) measured directly with an oscillating sand tray and defined a 
drag coefficient K by 

TB 
K = ;7/a2w2, where T = - 

4a ' (14.8) 

T being the period of oscillation. (We take the density of water as unity.) Since 
T = 2n/w and aw = U, this definition corresponds to 

'?D = 3K. (14.9) 

Experimentally, Bagnold found that when a /L  < 1 then K = 0.08, and, for larger 
values of a/L,  K decreased like ( ~ l L ) - o ' ~ .  

Perhaps the most complete observations of drag have been made by Carstens et al. 
with an oscillating U-tube. From their definition 7 = i f U 2  (where a single bar denotes 
the space-average) it is clear that we must have 

- -  
cD = *(fd -f8) (14.10) 

(subscripts 8 and d denote the rippled bed and smooth bed, respectively). Table 2 
gives those values of 6, for which the available parameters are all known. From their 
tables we have also deduced the values of 2a and 2alL. In  figure 10 we show C D  plotted 
against 2a/L. Although there is also some correlation in the data between 2alL and 
h/L, it is fairly clear from figure 9 that the drag coefficient is relatively large at  around 
2alL = 1-5, compared with its value a t  higher values of 2alL. The spread of values 
near 2a/L = 1.5 is also large. 

The experimental points in figure 9 attributed to Lofquist (1980) tend to confirm 
the measurements of Carstens et al. 

Finally in table 3 and figure 10 we show the values of '?, calculated from equations 
(8.14) and (14.4). Thus the second and third columns of table 2 show the values of 

(14.11) 

calculated over the first complete cycle, centred on wt = T ,  and on the cycle centred on 
wt = 2n, respectively. The value of E, as we have seen, is comparable to the kinematic 
viscosity v ;  the boundary of the 'core' is at  a radius 8, = [s(t -tn)]*, compared to the 
radius at  which the radial velocity (12.8) is a maximum, namely T = 2*24(vt)*. We 
may therefore take E = 5 . 0 ~  very roughly. In  the model we took k = 1, L = 2n/5 and 
w = 1 , U, = 0-75wL. This gives an effective Reynolds number 

Re E U,L/v N 5-9E-l. (14.12) 

The Reynolds numbers in table 3 (a) are therefore comparable with those in the experi- 
mental data of table 2. 

From table 3 (a) it is evident that the calculated values of the drag coefficient cD 
are not strongly dependent on E. The values of cD given in the last column have been 
plotted in figure 10, and are clearly within the experimental range. 

At larger values of a/L,  the ripple steepness, in the experiments of Carstens et al. 
(1969)) on the whole decreases, so that the calculations for P = 5 are not directly 
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FIUTJRE 11. Calculated values of the drag coefficient, compared with the measurements of 
Bagnold (1946) over a rigid rippled bed. - - - -, observations of Bagnold (1946). Theory for 
E = +, P = 6; 0, P = 6. 

comparable with their results. However, the effect of increasing a / L  while maintaining 
h/L constant can be seen experimentally from the results of Bagnold (1946) who used 
a $xed rippled surface with a constant ripple steepness of 116.7, that is 0.149. His 
experimental curve is shown by the broken line in figure 11. This indicates that the 
drag tends to decrease as alL is increased beyond 1.0. No doubt this is due to the 
troughs becoming filled with vorticity, so that for very long strokes an almost steady 
flow is achieved on each stroke. 

In  table 3 ( b )  we show some calculated values of the mean drag coefficient cD at 
various values of 2a/L, and over successive complete cycles of the oscillation. It will 
be seen that even after 6 cycles the flow is not steady. Some of the scatter in the 
calculated values may well reflect a real unsteadiness in the flow, as has been found, 
for example, by Bearman, Graham & Singh (1979) with oscillating flow round 
cylinders. Again, the mean values of ED, shown in the right-hand column, do not 
appear to  depend systematically on the value of 8. But there is a tendency for ED to 
decrease as 2alL increases beyond 1. 

The steepness (0.149) of the ripples in Bagnold’s experiment is intermediate be- 
tween that for P = 5 and P = 6 (see table 1). In figure ll, the corresponding values 
of cD for P = 5 and P = 6 have been plotted, at  the same value of 8, that is 8 = 
It will be seen that the values for P = 6 all lie below those for P = 5, suggesting a 
consistent dependence on ripple steepness. Moreover each of the calculated curves 
shows a trend similar to Bagnold’s observations. 
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15. Discussion and conclusions 
In this study we have implicitly assumed that the ripple boundary can be regarded 

as stationary and well-defined, and that the effect on the flow of any sediment in 
suspension can be neglected, in a first approximation. In  spite of these assumptions 
it appears that the calculated drag coefficients are in remarkably good agreement 
with the high values found experimentally. 

It will be appreciated that fundamentally the present theory is inviscid. In  the 
vortex-shedding analysis of $6, if the time-scale is changed by a factor 7,  say, while 
the horizontal displacement 2a of the fluid for large y is kept constant, then Q is 
multiplied by 7-l and the circulation r, corresponding to a given p b e  wt of the 
motion, by (6.2), is multiplied by 7-l also. But r, has the dimension of (length)2/time. 
Hence the displacements associated with each vortex element are unchanged. In  other 
words the pattern of flow is, to a first approximation independent of the frequency, 
for a given horizontal stroke 2a. This agrees well with Bagnold’s findings (1946, $6)  
that the pitch of vortex ripples was in all cases independent of the speed of oscillation. 

Subsequent calculations based on assigning a ‘ core’ to each vortex suggest that 
for high Reynolds numbers the drag is not strongly dependent on Re. When computa- 
tions are carried to larger values of the time t ,  we may expect the scatter of the com- 
puted values of c, a t  any given value of e to match the scatter in the observations. It 
is also possible that the flow may settle to an asymmetric state, the drag in one 
direction tending to exceed that in the opposite direction. 

The limited comparisons that we have so far made with laboratory data show 
substantial agreement between the theoretical and observed values of the drag coeffi- 
cient cD. They are also in rough agreement with the field data quoted by Vitale (1979, 
table 1;  Vitale’s friction coefficient f, defined as 3nD/2u:, is equivalent to 2cD). 

A more detailed comparison with the available observations, for different values of 
P, 2alL and E will be given in future papers, together with a theory of the stability of 
sand ripples making use of the present model, or a simplified version of it, for the fluid 
flow. The question of possible three-dimensional vortex flows associated with 
Bagnold’s ‘ brick-pattern ’ (1946, figure 8) remains also to be investigated. 

Meanwhile it should be mentioned that the basic transformation of the ripple 
surface into a polygon, as described in 5 2, is by no means confined to integral values 
of P, but can be used whenever P is rational, i.e. 

P = N / M  2 2, (16.1) 

where N and M are any positive integers. Thus in (2.2) we should have 

ENL = 2Mn, (15.2) 

that is, the P-gon encloses its centre M times, and in both the 6 plane and the W plane 
we map N ripple lengths onto M sheets of a Riemann surface. The case P = 11/2 is 
illustrated in figure 12. The analytic expressions, which need not be set out in detail, 
are all quite similar to those already given. 

The special case P = 2 corresponds to a digon or, in the z plane, a set of equally 
spaced vertical parallel plates. The corresponding conformal transformation of a flat 
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FIGURE 12. The transformation of 11 ripples with creet angle 114.60° into the polygon {11/2), 
(a) in the z plane and (b)  in the g plane. 

(two-dimensional) plate into a circular cylinder, i.e. 

(15.3) 

is well known. For then K = # (see table 2) and on taking f = Wo = 1 we obtain 

< = &(W+ w-1). (15.4) 
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32 M .  S .  Longuet-Higgine 

Appendix A. Derivation of (8.5) from Blasius' theorem 
We start from Blasius' theorem in the form 

Here F + iG is the force exerted by the fluid on the boundary C,  of the ripple. The signs 
in (A 1) are the reverse of those normally assumed, since in figure 6 the contour C ,  is 
taken with the solid to the right, not to the left. 

Consider first 

where is given by equation (5.4). Since d x l d z  is periodic in x, i t  follows that the 
integral of (dx/dz)* taken along the two vertical contours C2 and C, in figure 6 just 
vanishes. So by Cauchy's theorem 

where B, denotes a small contour surrounding z,. But, on C3, dxldz N U, and on B, 
we may write 

where f ,  is the velocity of the vortex at z,. Hence 

by the residue theorem. 
Likewise let 

Then if the r, are all independent oft we have 
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and the residue of the integrand at  z = zn is simply 

Hence we have 

(A 13) 
J 2 =  - iLO(h+k- l lnK)+xr , l?n--xI 'n in .  P L  Pn 

n Pn n 

Thirdly we have 

where +* is found from (7.10) : 

Hence 

Altogether then we find from (A 1) 

The real part of this equation gives precisely (8.6). 

Appendix B. Evaluation of (12.10) 
To show that 

we have 

say, where 
M = M1-2M2+M3, 

M, = e-2Adh = #, 

dh 
(1 - e-A) e-A 
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dh 
m 2(1 - h  - e-*) - (1 - 2h - e-2h) 

= S O  A2 

wherep = 2A. Thus 

From equations (B 2)-(B 5) the result (B 1) follows immediately. 
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